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Abstract

C++ allows passing templates as template parameters. It does not, however, support these
template template-parameters to be non-types, i.e., either variables or concepts, which
represents a hole in the template facilities and is the topic of this paper.

We introduce a way to pass concepts and variable templates as template parameters

template<
template <typename T> concept C,
template <typename T> auto C

>

struct S{};

template <typename T>
concept Concept = true;

template <typename T>
constexpr auto Var = 42;

S<Concept, Var> s;

Motivation

Template template-parameters allow for higher-order templates and greater composability.
They can be used, for example, to parametrize a function that operates on any container of
any type or to write CRTP-based interfaces.

C++23 limits template template-parameters to be class templates or alias templates. Avariable
template (C++14) or a concept (concepts are themselves templates) cannot be passed as a
template argument in C++23.

The motivation for passing a concept as a template argument is very much the same as
our reason for supporting class templates as template arguments: to allow higher-level
constructs.
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While there are workarounds - for example by wrapping a variable in a struct with a value
member that can then be passed as a type template template parameter, these workarounds
all suffer the same limitations:

* They have terrible ergonomics
* They have a noticeable impact on performance - instantiating types is expensive

* They do not allow to take advantage of nice concept properties such as terse syntax and
subsumption.

All of these limitations of available patterns are additional motivations for this proposal.

Being able to define a concept adaptor, for instance, would be very nice:

template <typename T, template <typename> concept C>
concept decays_to = C<decay_t<T>>;

Being able to use it with any concept constraint would also be helpful:

template <decays_to<copyable> T>
auto f(T&& x);

Other such constructs might, for example, include the following.

* range_of
Many algorithms can operate on a sequence of integer or string-like types and while
it is possible to express range<T> && SomeConcept<ranges::range_reference_t<R>>, some
codebases do that enough that they might want to have a shorter way to express that
idea, one that would let them use the abbreviated syntax in more cases.

* tuple_of
This follows the same idea, but expressing this idea in the require clause of each function
or class that might need it would be an exercise in frustration and a maintenance
nightmare. We explore a tuple_of concept later in this paper. Representing vectors as
tuples-like things of numbers is common in the scientific community, and these scientific
libraries have no ideal way to express these constraints.

* Avoiding duplication.
In his blog post on this very topic, Barry Revzin observed that std: :ranges defines a
handful of concepts that are very similar to one another except they use different con-
cepts internally. Concept template-parameters can reduce a lot of duplication. Compare
the definitions in the Standard and the implementation with our proposal.

To quote Barry’s aforementioned blog post

I'd rather write a one-line definition per metaconcept, not a one-line definition
per metaconcept instantiation.

So part of the motivation for concept template-parameters is the same motivation we have
for functions, templates, and classes: We want to be able to reuse code and to make it less
repetitive and error-prone.
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We also demonstrated how this feature can be leveraged to provide better diagnostics when
a concept is not satisfied [Compiler Explorer].

There is community interest in these features.
+ Is it possible to pass a concept as a template parameter?
+ Concept to assert an argument is another concept, with whatever parameters
* Passing a concept to a function
* How to pass a variable template as template argument
+ Can avariable template be passed as a template template argument?

Unfortunately, this is one of those features that truly shows its power on large examples that
don't tend to fit into papers.

Variable-template template-parameters

Variable-template template-parameters (previously proposed in P2008RO0 [6]) are useful by
themselves. They can be emulated with a template class with a static public value data member.
Most standard type traits are defined as a type and have an equivalent _v variable:

template <typename T, typename U>
constexpr bool is_same_v = is_same<T, U>::value;

But this is not compile-time efficient: A class has to be instantiated, which is usually slow on
most implementations. Then we still need to instantiate the variable. This performance issue
is explored in more detail in P1715R1 [2].

In microbenchmarks, GaSper has observed a minimum of 30% speedup by not instantiating
class bodies, and a 50% memory usage reduction for programs with heavy traits usage,
specifically when implementing P2300-like classes.

Also, if one has multiple metaprogramming libraries, relying on idioms like : :value is funda-
mentally less composable than a value just being a value. Similarly, if you have a concept
in your codebase, you shouldn’t have to wrap it into a static constexpr : :value member of a
type to pass it to a metafunction.

Wrapping variables in class templates also adds complexity for users: The main reason we
expose both a variable template and a class template for every boolean trait is that the
language does not support variable-template template-parameters. (Note that we are aware
of some codebases using traits as tags for dispatch but this is far from the common case.)

For instance, counting elements that satisfy a specific predicate could be done as
template <template <typename> auto p, typename... Ts>

constexpr std::size_t count_if_v = (... + p<Ts>);

We could do the same thing with a type, but it incurs a class template instantiation for each
element:
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template <template <typename> typename p, typename... Ts>
constexpr std::size_t count_if_v = (... + p<Ts>::value);

It will always be more work for the compiler to instantiate a whole class together with its body
(not just its declaration) to allow access to the inner value member than just instantiating a
variable template, no matter how much we try to optimize this pattern. p1715r1 [?] makes
the same case.

Additional examples

The authors have use cases that don't fit in the paper (typical for the most interesting use
cases) where type-based vs variable-based metaprogramming means the difference of 300s
compile-times per unit vs. more than an hour (currently by textually duplicating definitions
that could have been genericized if variable template template-parameters were available).
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Terse syntax, overloading, and reusing existing concepts

The following example, simplified from production code shows multiple interesting properties
of concept template parameters. with_values_t takes a function and a predicate, and call the
function with all the argument satisfying this predicate.

Here we demonstrate the function with either and maybe, but in reality, this is used with
receiver types - which are also monadic. The call operator applies f to all engaged arguments.
But all the arguments must be of the same shape (all optionals, all expected), etc.

To do that, we here use the abbreviated function template syntax with type-constraints,
which is only possible with concept template parameters.

template <typename T>

struct maybe;

template <typename L, typename R>
struct either;

template <typename T>
concept a_maybe = /*...%/;
template <typename T>
concept an_either = /*...%x/;

template <template <typename> concept C>
struct _with_values_t {

static constexpr auto operator()(auto8& f, C auto8& e, C auto&& ... es) -> decltype(auto) {
if (is_active<C>(e)) { // does the active type in the variant satisfy C
return _with_values_t{}(bind_front(f, xv), FWD(vs)...);
} else {
return _with_values_t{}(f, FWD(vs)...);
3
}

3

// have to enforce it's the same monad or it doesn’'t make any sense

inline constexpr struct with_values_t : _with_values_t<a_maybe>, _with_values_t<an_either> {
using _with_values_t<a_maybe>: :operator();
using _with_values_t<an_either>::operator();

} with_values {};

It would be technically possible to use a type instead here

template <typename T>
struct an_either_t {
static constexpr bool value = an_either<T>;

b
struct _with_values_t {
template <typename First, typename... Tail>
requires (an_either_t<First>::value && (an_either_t<Tail>::value && ...))
static constexpr auto operator()(auto&& f, C auto&& e, C auto&& ... es) -> decltype(auto);

3



But again:

* This is much less ergonomic as it forces users to wrap their concepts in types which is
not intuitive (ie we have found that difficult to teach).

* The necessity of introducing new names for the same predicate - just exposed as a type,
concept, or variable - adds unnecessary complexity to APIs

+ Composability only works by convention.
+ Creating types has a significant performance impact on compile times

+ Diagnostic messages are slightly worse than they could be because of the added layers
of wrapping and because compilers will decompose concepts in diagnostic messages.

When life gives you Lambdas

To work around the lack of lambda parameters, users have started to use generic lambdas

template <typename T, auto ConceptWrapperLambda>
concept decays_to = requires {
ConceptWrapperLambda. template operator()<std::decay_t<T>>();
b
template <class T>
requires decays_to<T, ([J<std::copyable>(){})>
auto f(T&& x) {}

Here the concepts we want to parametrize on are passed as a constrained generic lambda -
which we then try to call when checking our higher-level concepts. This allows not to have to
create a new type for each concept, so it might be slightly easier to use, although the reader
will agree that it particularly arcane. In addition to the usability concerns, lambdas are never
a solution to compile times performance.

All the existing swork around suffer similar performance and usability concerns, and of course
none support subsumption. Yet, many such workarounds have been developed and number
of them have been deployed in production. Daisy Hollman provided an entire collection of
such workarounds.
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Mixins
In this other example adapted from production code, We have a mixin container that has a

get_mixin<concept> utility that returns the reference to the mixed-in type that implements
that concept. Currently, we emulate it with the horrible constrained lambda trick.

template <typename facade>
struct utils {
auto& self() & { return static_cast<facade&>(xthis); }

template <template <typename> concept C>
auto _get_mixin() -> auto& {
return this->facade::template _get_mixin<C>();

}
1
template <typename... Mixins>
struct facade : Mixins<utils<facade>>... {

template <template <typename> concept C>
auto& _get_mixin() {
using return_t = select_first_t<C, Mixins...>;
return static_cast<return_t&> (*this);
3
b

// and you want users to do stuff like

template <typename X>

concept exchange_handler = requires (X x, order o) {
x.send_order(0);
{ x.decode_order(std::byte const*); } -> an_order;

}

There is no way to turn this concept into a type-trait in this mixin library, and there’'s no way
to teach users to make concepts like exchange_handler, unless we teach them that they have
to lift the type themselves, with a different name.

Previous work

Variable-template template-parameters were proposed in P2008R0 [6] and were part of the
original design for variable templates N3615 [7]. Concept template-parameters have been
described by Barry Revzin (back when Concept names were uppercase) in his blog here and
here. We mentioned them in P2632R0 [5] and P1985R3 [1].

Universal template-parameters

The fact that variable-template template-parameters and concept template-parameters ap-
pear in the same papers is not accidental. For a universal template-parameter to be universal,
we need to make sure it covers the set of entities we could want to use as template-parameters.
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There is, therefore, an important order of operations. If we were to add universal template-
parameters before concept template-parameters and variable-template template-parameters,
we would be in a situation where either

+ we can't ever add concept template-parameters and variable-template template-parameters
* "universal template-parameters would not be truly universal”

+ we would feel forced to come up with some kind of "more universal template-parameter”
syntax

None of these outcomes seems desirable; therefore, the best course of action is to ensure
that we support as best we can the full set of entities we might ever want to support as
template-parameters, before adding support for universal template-parameters.

Design

Syntax

We propose the following syntax for the declaration of a template head accepting a concept
as parameter:

template<
template <template-parameter-1ist> concept C
>

We propose the following syntax for the declaration of a template head accepting a variable
template as parameter:

template<
template <template-parameter-1ist> auto C
>

This forms a natural, somewhat intuitive extension of the existing syntax for template exten-
sion:
template<

typename T,

auto V,

template <template-parameter-1ist> typename TT,

template <template-parameter-list> auto VT,

template <template-parameter-1ist> concept C,

Default Arguments

Like type template template parameters, concepts, and variable template template parame-
ters can have a default argument that is a concept name or the name of a variable template
respectively. Packs can't be defaulted. (That's a separate paper!)



Usage

Within the definition of a templated entity, a concept template-parameter can be used any-
where a concept name can be used, including as a type constraint, in the requires clause, and
so forth.

For example, the following should be valid:

template <template <typename T> concept C>
struct S {
void f(C auto);

3

Concept template-parameters and subsumption

Consider:

template <typename T>
requires view<T> && input_range<T>
void f(); // #1

template <typename T>
requires view<T> && contiguous_range<T>
void f(); // #2

We expect #2 to be more specialized than #1 because contiguous_range subsumes
input_range.

Now, consider:

template <typename T>
requires all_of<T, view, input_range>
void f(); // #1

template <typename T>
requires all_of<T, view, contiguous_range>
void f(); // #2

[Run this example on Compiler Explorer]

This example ought to be isomorphic to the previous one, and #2 should still be more special-
ized than #1. To do that, we need to be able to substitute concept template arguments in
constraint expressions when normalizing constraints.

When establishing subsumption, we have historically not substituted template arguments,
instead establishing a mapping of template parameters to arguments for each constraint and
comparing those mappings.

But to establish subsumption rules for concept template-parameters, we need to depart from
that somewhat.
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Concepts have the particularity of never being explicitly specialized, deduced, dependent, or
even instantiated. Substituting a concept template argument is only a matter of replacing
the corresponding template parameter with the list of constraints of the substituted concept,
recursively.

As such, subsumption for concept template-parameters does not violate the guiding principle
of subsumption.

template<typename T, template <typename...> concept C>
concept range_of = std::ranges::range<T> && C<std::remove_cvref_t<std::ranges::
range_reference_t<T>>>; // #1

template<typename T>
concept range_of_integrals = std::ranges::range<T> && std::integral<std::remove_cvref_t<std::
ranges: :range_reference_t<T>>>; // #2

Note that this transformation does not change any other behavior of normalization, i.e.,
concept template-parameters that appear within other atomic constraints are not substituted,
and arguments that are not concept names are not substituted either.

Fold expressions involving concept template-parameters

Our proposed design allow for subsumption in the the presence of fold expressions whose
pattern is a concept. (For the non-concept case, see P2963R0 [4])

template <

typename T,

template <typename...> concept... C>
concept all_of = (C<T> && ...);

Once substituted, the sequence of binary && or | | is normalized, all_of, any_of, and so on can
then be implemented in a way that supports subsumption.

One very important case where this facility is absolutely essential is constraining tuples (and
other algebraic data-types) by dimension:

template <typename X, template <typename> concept... C>
concept product_type_of = (... && C<std::tuple_element_t<C...[?], X>>);
// index-of-current-element, not proposed, but needed ~~~~~~~

P2632RO0 [5] discusses alternatives to the awful index-of-current-element syntax above.

ADL

Similar to variables, variable templates and concepts are not associated entities when per-
forming argument-dependent lookup. This is consistent with previous work (for example
N3595 [3] and P0934R0 [8]) and the general consensus toward ADL.

10
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Deduction and partial ordering

Variable and concept template-parameters should be deducible from a template argument of
a class template, used in the argument list of a function, including a function that is synthesized
for the purpose of partial ordering; i.e., the intent is that the following is well-formed:

template <template <class> auto V, template <class> concept C>
struct A {3}; // A takes a variable template template argument

template <template <class T> auto V, template <class> concept C>
void foo(A<V, C>); // can accept any specialization of A; V and C are deduced

template <class T>
auto Var = 0;

template <class T>
concept Concept = true;

void test() {
foo(A<Var, Concept>{1});

}

[Run this example on Compiler Explorer]

Equivalence of atomic constraints

One interesting concept to consider is tuple_of, which would e.g., allow constraining a function
on a tuple-like of integrals, a frequent use case in scientific computation.

In the absence of member and alias packs, a tuple_like concept could look like

template <typename T, int N>
constexpr bool __tuple_check_elements = [] {
if constexpr (N == 0)
return true;
else if constexpr(requires (T t) {
typename std::tuple_element_t<N-1, T>;
{ std::get<N-1>(t) 3};
1))
return __tuple_check_elements<T, N-1>;
return false;

105

template <typename T>
concept tuple_like = requires {
typename std::tuple_size<T>::type;
} & __tuple_check_elements<T, std::tuple_size_v<T>>;

Here, we use a constexpr variable template to check the constraint on individual elements.
We can trivially adapt this code to take a concept argument:

template <typename T, template <typename> concept C>

11
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concept decays_to = C<std::decay_t<T>>;

template <typename T, int N, template <typename> concept C>
constexpr bool __tuple_check_elements = [] {
if constexpr (N == 0)
return true;
else if constexpr(requires (T t) {
typename std::tuple_element_t<N-1, T>;
{ std::get<N-1>(t) } -> decays_to<C>;
1))
return __tuple_check_elements<T, N-1, C>;
return false;

305

template <typename T, template <typename> concept C>
concept tuple_of = requires {

typename std::tuple_size<T>::type;
} && __tuple_check_elements<T, std::tuple_size_v<T>, C>;

And this works fine, but __tuple_check_elements is an atomic constraint, so we cannot establish
a subsumption relationship for this concept.

With a sufficient number of pack features, we could probably write a concept that checks all
elements with a single constraint, i.e.,

template <typename T, typename E, int N, template <typename> concept C>
concept __tuple_of_element = requires (T t) {

typename std::tuple_element_t<N, T>;

{ std::get<N>(t) } -> decays_to<C>;
} & C<std::tuple_element_t<0, T>>;

template <typename T, template <typename> concept C>
concept tuple_of = requires {
typename std::tuple_size<T>::type;
} & (__tuple_of_element<T, T::[:], current_expansion_index_magic(), C> && ...);

But in addition to relying on imaginary features, this is pretty inefficient since ordering
complexity would be proportional to the square of the number of tuple elements.

Fortunately, while checking satisfaction does require looking at every element, we can look at
just one element to establish subsumption in this particular case.

We can rewrite our concept as

template <typename T, int N, template <typename> concept C>
concept __tuple_of_element = requires (T t) {

typename std::tuple_element_t<N, T>;

{ std::get<N>(t) } -> decays_to<C>;
} && C<std::tuple_element_t<0, T>>;

template <typename T, int N, template <typename> concept C>

constexpr bool __check_tuple_elements = [] {
if constexpr (N == 1)

12



return true;
else if constexpr(__tuple_of_element<T, N-1, C>)
return __check_tuple_elements<T, N-1, C>;
return false;

305

template <typename T, template <typename> concept C>
concept tuple_of = requires {
typename std::tuple_size<T>::type;
} && (std::tuple_size_v<T> == 0 || (
// Check the first element with a concept to establish subsumption

__tuple_of_element<T, 0, C> &&
// Check constraint satisfaction for subsequent elements
__check_tuple_elements<T, std::tuple_size_v<T>, C>

));

[Run this example on Compiler Explorer]

For this to work, the concept template-parameter C needs to be substituted in the concept
__tuple_of_element but not in the atomic constraint __check_tuple_elements<T, std::tuple_-
size_v<T>, C>.

Atomic constraints also need to ignore concept template-parameters for the purpose of
comparing their template arguments when establishing atomic constraint equivalence during
subsumption.

Status of this proposal and further work

Our main priority should be to make progress on some form of universal template parame-
ters. We will have an implementation of universal template parameters for the Standards
Committee meeting in Kona. Before that, we need to ensure concepts and variable-template
template-parameters are supported features so that universal template-parameters support
the gamut of entities that could reasonably be used as template-parameters.

As part of that, subsumption for concept template-parameters, as proposed in this paper,
as well as subsumption of fold expressions should be considered an integral part of the
design since adding them later might be somewhat annoying. (It could affect existing code,
in theory.)

Things to be careful about

Concepts have carefully designed limitations aimed to make subsumption possible and rea-
sonably efficient. Care has to be taken not to change that.

In particular, specialization of concepts is not allowed nor is declaring concepts in classes or
other non-global (potentially dependent) contexts.

13


https://compiler-explorer.com/z/n6nsdj37j

Concept template-parameters need to be substituted when evaluating constraints, but other
arguments do not. Efficient memoization is still possible by caching concept template argu-
ments (and only concept template arguments) along the concept.

Concept template-parameters do not allow a concept to refer to itself, i.e., recursion. Universal
template-parameters may allow recursion.

template <typename T, __any C, typename...Args>
concept Y = C<C, Args...>;

template <typename T, template <typename...> Concept , typename...Args>
concept Foo = Concept<T, Args...>;

Y<int, Foo>;

This will need careful consideration, but we have options, such as preventing the same concept
name from appearing multiple times or having an implementation-defined limit for how many
concepts can be replaced during subsumption.

Implementation

The paper as proposed has been implemented in a fork of Clang and is available on compiler-
explorer. The implementation revealed no particular challenge. In particular, we confirmed
that the proposed changes do not prevent memoization for subsumption and satisfiability,
i.e., a concept and the set of its concept parameters are what needs to be cached.

Wording

€  Preamble [basic.pre]

Every name is introduced by a declaration, which is a
* name-declaration, block-declaration, or member-declaration [dcl.pre,class.mem],
* init-declarator [dcl.decl],
* identifier in a structured binding declaration [dcl.struct.bind],
* init-capture [expr.prim.lambda.capture],
* condition with a declarator [stmt.pre],
* member-declarator [class.mem],
* using-declarator [namespace.udecl],
« parameter-declaration [dcl.fct],

* type-parameter [temp.param],

14



\ 2

template-template-parameter [temp.param],
elaborated-type-specifier that introduces a name [dcl.type.elab],
class-specifier [class.pre],

enum-specifier or enumerator-definition [dcl.enum],
exception-declaration [except.pre], or

implicit declaration of an injected-class-name [class.pre].

Argument-dependent name lookup [basic.lookup.argdep]

For each argument type T in the function call, there is a set of zero or more associated entities to
be considered. The set of entities is determined entirely by the types of the function arguments
(and any template type-template-parameter template arguments). Any typedef-name s and
using-declarations used to specify the types do not contribute to this set. The set of entities is
determined in the following way:

If Tis a fundamental type, its associated set of entities is empty.

If T is a class type (including unions), its associated entities are: the class itself; the class
of which it is a member, if any; and its direct and indirect base classes. Furthermore,
if T is a class template specialization, its associated entities also include: the entities
associated with the types of the template arguments provided for template type param-
eters; the templates used as template template arguments; and the classes of which
any member templates used as template template arguments are members. [ Note:
Non-type template arguments do not contribute to the set of associated entities. — end
note]

If Tis an enumeration type, its associated entities are T and, if it is a class member, the
member’s class.

If T is a pointer to U or an array of U, its associated entities are those associated with u.

If T is a function type, its associated entities are those associated with the function
parameter types and those associated with the return type.

If T is a pointer to a member function of a class X, its associated entities are those
associated with the function parameter types and return type, together with those
associated with X.

If T is a pointer to a data member of class X, its associated entities are those associated
with the member type together with those associated with X.

In addition, if the argument is an overload set or the address of such a set, its associated
entities are the union of those associated with each of the members of the set, i.e., the entities
associated with its parameter types and return type. Additionally, if the aforementioned
overload set is named with a template-id, its associated entities also include its template
template-arguments denoting a class template or an alias template and those associated with
its type template-argument s.

15



The associated namespaces for a call are the innermost enclosing non-inline namespaces for
its associated entities as well as every element of the inline namespace set [namespace.def]
of those namespaces. Argument-dependent lookup finds all declarations of functions and
function templates that

+ are found by a search of any associated namespace, or

+ are declared as a friend [class.friend] of any class with a reachable definition in the set
of associated entities, or

* are exported, are attached to a named module M [module.interface], do not appear in
the translation unit containing the point of the lookup, and have the same innermost
enclosing non-inline namespace scope as a declaration of an associated entity attached
to M [basic.link].

If the lookup is for a dependent name [temp.dep,temp.dep.candidate], the above lookup is
also performed from each point in the instantiation context [module.context] of the lookup,
additionally ignoring any declaration that appears in another translation unit, is attached to
the global module, and is either discarded [module.global.frag] or has internal linkage.

©  The typedef specifier [dcl.typedef]

A simple-template-id is only a typedef-name if its template-name names an alias template
or a-template-template-parameter- a type-template-parameter template-parameter. [ Note: A
simple-template-id that names a class template specialization is a class-name [class.name]. If
a typedef-name is used to identify the subject of an elaborated-type-specifier [dcl.type.elab],
a class definition [class], a constructor declaration [class.ctor], or a destructor declaration
[class.dtor], the program is ill-formed. — end note]

o Names of template specializations [temp.names]

A template specialization [temp.spec] can be referred to by a template-id:

simple-template-id:
template-name < template-argument-list,,; >

template-id:
simple-template-id
operator-function-id < template-arqgument-list,,,,; >
literal-operator-id < template-arqgument-list ., >

template-name:
identifier

template-argument-list:
template-argument . . .,
template-argument-list , template-argument . . . ,,,
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template-argument:
constant-expression
type-id
id-expression
concept-name

[Editor’s note: [...]]

A concept-id is a simple-template-id where the template-name is a concept-name or names a
concept-parameter . A concept-id is a prvalue of type bool, and does not name a template
specialization. A concept-id evaluates to true if the concept’s normalized constraint-expression
[temp.constr.decl] is satisfied [temp.constr.constr] by the specified template arguments and
false otherwise. [ Note: Since a constraint-expression is an unevaluated operand, a concept-id
appearing in a constraint-expression is not evaluated except as necessary to determine whether
the normalized constraints are satisfied. —end note] [ Example:

template<typename T> concept C = true;
static_assert(C<int>); // OK

—end example]

o Template parameters [temp.param]

The syntax for template-parameters is:

template-parameter:
type-parameter
parameter-declaration
template-template-parameter

type-parameter:
type-parameter-key . . ., identifier ,,,
type-parameter-key identifier ,,, = type-id
type-constraint . . ., identifier,,;
type-constraint identifier ., = type-id
- -opt opt

template-head-type-parameter-key——ridentifiers;r
template-head-type-parameter-key-identifier spr=-ic-expression

type-parameter-key:
class
typename

type-constraint:
nested-name-specifier ,,; concept-name
nested-name-specifier ,,; concept-name < template-argument-list,,, >

template-template-parameter:
type-template-parameter
variable-template-parameter
concept-parameter
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type-template-parameter:
template-head type-parameter-key . . .,,. identifier,,,
template-head type-parameter-key identifier ., = id-expression

variable-template-parameter:
template-head auto . .., identifier,,,
template-head auto identifier,,, = id-expression

concept-parameter:
template < template-parameter-list > concept . . ., identifier,,,
template < template-parameter-list > concept identifier ,,; = id-expression

The component names of a type-constraint are its concept-name and those of its nested-name-
specifier (if any). [ Note: The > token following the template-parameter-list of a type-parameter
can be the product of replacing a >> token by two consecutive > tokens [temp.names]. —end
note]

There is no semantic difference between class and typename in a type-parameter-key. typename
followed by an unqualified-id names a template type parameter. typename followed by a
qua//f/ed-/d denotes the type in a non- type [Footnote &%e—temptate—temﬁate-ﬁarameter&&ﬁd
y The terms non-
type parameter and non-type argument are used to refer to non—type, non-template parameters
and arguments. —end note] parameter-declaration. A template-parameter of the form class
identifier is a type-parameter. [ Example:

class T { /*...%x/ };
int i;

template<class T, T i> void f(T t) {
Tt =1i; // template-parameters T and i
T t2 = 10iy // global namespace members T and i

Here, the template f has a type-parameter called T, rather than an unnamed non-type template-
parameter of class T. —end example] A storage class shall not be specified in a template-
parameter declaration. Types shall not be defined in a template-parameter declaration.

The identifier in a type-parameter is not looked up. A type-parameter whose identifier does not
follow an ellipsis defines its identifier to be a typedef-name (if-declared-without-template)-or
template-name{if declared-with-template) in the scope of the template declaration.

The identifier in a template-template-parameter is not looked up. A template-template-parameter
whose identifier does not follow an ellipsis defines its identifier to be a template-name in the
scope of the template declaration.

[ Note: A template argument can be a class template or alias template. For example,

template<class T> class myarray { /*...x/ };

template<class K, class V, template<class T> class C = myarray>
class Map {
C<K> key;
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C<V> value;

3
—end note]

[Editor’s note: Modify [temp.param]/p16 As follow]

If a template-parameter is a-type-parameter-with-an-ellipsis-prior-to-its-optionalidentifier-oris
a-parameter-declaration-that-declares-a-pack{dekfet}

* a type-parameter with an ellipsis prior to its optional identifier,

* a parameter-declaration that declares a pack [dcl.fct], or

« a template-template-parameter with an ellipsis prior to its optional identifier,

then the template-parameter is a template parameter pack [temp.variadic]. A template pa-
rameter pack that is a parameter-declaration whose type contains one or more unexpanded
packs is a pack expansion. Similarly, a template parameter pack that is a type-parameter with
a template-parameter-list containing one or more unexpanded packs is a pack expansion. A
type parameter pack with a type-constraint that contains an unexpanded parameter pack is
a pack expansion. A template parameter pack that is a pack expansion shall not expand a
template parameter pack declared in the same template-parameter-list.

o Template template arguments [temp.arg.template]

o General [temp.arg.general]

There are three forms of template-argument, corresponding to the three forms of template-
parameter: type, non-type and template. A template template argument can name a type or
alias template, a variable template or a concept.

The type and form of each template-argument specified in a template-id shall match the type
and form specified for the corresponding parameter declared by the template in its template-
parameter-list. When the parameter declared by the template is a template parameter pack
[temp.variadic], it will correspond to zero or more template-arguments. [ Example:

template<class T> class Array {
Tx v;
int sz;
public:
explicit Array(int);
T& operator[](int);
T& elem(int i) { return v[il; }

};

Array<int> v1(20);

typedef std::complex<double> dcomplex; // std::complex is a standard library template
Array<dcomplex> v2(30);

Array<dcomplex> v3(40);
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void bar() {

vi[3] = 7;

v2[3] = v3.elem(4) = dcomplex(7,8);
1

—end example]

A template-argument for a template template-parameter shall be an id-expression denoting

+ the name of a class template or an alias template for a type-template-parameter,
« the name of a variable template for a variable-template-parameter, and
+ the name of a concept for a concept-template-parameter.

Only primary templates are considered when matching the template template argument
with the corresponding parameter; partial specializations are not considered even if their
parameter lists match that of the template template parameter.

Any partial specializations [temp.spec.partial] associated with the primary template are con-
sidered when a specialization based on the template template-parameter is instantiated. If a
specialization is not reachable from the point of instantiation, and it would have been selected
had it been reachable, the program is ill-formed, no diagnostic required. [ Example:

template<class T> class A { // primary template
int x;
b
template<class T> class A<Tx> { // partial specialization
long x;
3
template<template<class U> class V> class C {
V<int> y;
V<int*> z;
3
C<A> c; // V<int> within C<A> uses the primary template, so c.y.x has
type int

// V<int*> within C<A> uses the partial specialization, so c.z.x has type long

—end example]
Two template parameters are of the same kind if:
* they are both type-parameter,
* they are both non-type parameter,
* they are both type-template-parameter,
* they are both variable-template-parameter, or

* they are both concept-parameter.
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A template template parameter P and a template argument A are compatible if

+ A denotes the name of a class template or alias template and P is a type-template-
parameter,

« A denotes the name of a variable template and P is a variable-template-parameter, or
+ A denotes the name of a concept and P is a concept-parameter.

A template-argument matches a template template-parameter P when A and P are compatible
and P is at least as specialized as the template-argument A. In this comparison, if P is uncon-
strained, the constraints on A are not considered. If P contains a template parameter pack,
then A also matches P if each of A's template parameters matches the corresponding template
parameter in the template-head of P. Two template parameters match if they are of the same
kind {type,non-type,template), for non-type template-parameters, their types are equivalent
[temp.over.link], and for template template-parameters, each of their corresponding template-
parameters matches, recursively. When P's template-head contains a template parameter pack
[temp.variadic], the template parameter pack will match zero or more template parameters
or template parameter packs in the template-head of A with the same type and form as the
template parameter pack in P (ignoring whether those template parameters are template
parameter packs).

[ Example:

template<class T> class A { /*...x/ };

template<class T, class U = T> class B { /*...%/ };
template<class ... Types> class C { /*...%x/ };
template<auto n> class D { /*...x/ };
template<template<class> class P> class X { /*...x/ };
template<template<class ...> class Q> class Y { /*...*/ };
template<template<int> class R> class Z { /*...*/ };

X<A> xa; // OK
X<B> xb; // OK
X<C> xc; // OK
Y<A> ya; // OK
Y<B> yb; // OK
Y<C> yc; // OK
Z<D> zd; // OK

—end example] [ Example:

template <class T> struct eval;

template <template <class, class...> class TT, class T1, class... Rest>
struct eval<TT<T1, Rest...>> { };

template <class T1> struct A;

template <class T1, class T2> struct B;

template <int N> struct C;

template <class T1, int N> struct D;

template <class T1, class T2, int N = 17> struct E;
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eval<A<int>> eA; // OK, matches partial specialization of eval

eval<B<int, float>> eB; // OK, matches partial specialization of eval

eval<C<17>> eC; // error: C does not match TT in partial specialization
eval<D<int, 17>> eD; // error: D does not match TT in partial specialization
eval<kE<int, float>> eE; // error: E does not match TT in partial specialization

—end example] [ Example:

template<typename T> concept C = requires (T t) { t.f(); };
template<typename T> concept D = C<T> && requires (T t) { t.g(); };

template<template<C> class P> struct S { };

template<C> struct X { };
template<D> struct Y { };
template<typename T> struct Z { };

S<X> s1; // OK, X and P have equivalent constraints
S<Y> s2; // error: P is not at least as specialized as Y
S<Z> s3; // OK, P is at least as specialized as Z

—end example]

A template template-parameter P is at least as specialized as a template template-argument A if,
given the following rewrite to two function templates, the function template corresponding to
P is at least as specialized as the function template corresponding to A according to the partial
ordering rules for function templates [temp.func.order]. Given an invented class template X
with the template-head of A (including default arguments and requires-clause, if any):

* Each of the two function templates has the same template parameters and requires-
clause (if any), respectively, as P or A.

* Each function template has a single function parameter whose type is a specialization of X
with template arguments corresponding to the template parameters from the respective
function template where, for each template parameter PP in the template-head of the
function template, a corresponding template argument AA is formed. If PP declares a
template parameter pack, then AAis the pack expansion PP. . . [temp.variadic]; otherwise,
AA is the id-expression PP.

If the rewrite produces an invalid type, then P is not at least as specialized as A.

o Partial ordering by constraints [temp.constr.order]

A constraint P subsumes a constraint @ if and only if, for every disjunctive clause P; in the
disjunctive normal form [ Footnote: A constraint is in disjunctive normal form when it is a
disjunction of clauses where each clause is a conjunction of atomic constraints. For atomic
constraints A, B, and C, the disjunctive normal form of the constraint AA (BV C)is (AAB)V
(A A C). Its disjunctive clauses are (A A B) and (AA C). —end note] of P, P, subsumes every
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conjunctive clause @; in the conjunctive normal form [ Footnote: A constraint is in conjunctive
normal form when it is a conjunction of clauses where each clause is a disjunction of atomic
constraints. For atomic constraints A, B, and C, the constraint A A (B Vv C) is in conjunctive
normal form. Its conjunctive clauses are A and (B Vv C). —end note] of @, where

+ a disjunctive clause P; subsumes a conjunctive clause Q; if and only if there exists an
atomic constraint P, in P; for which there exists an atomic constraint @Q;; in Q; such that
P;, subsumes Q;;, and

*+ an atomic constraint A subsumes another atomic constraint B if and only if A and B are
identical using the rules described in ?2.

[Editor’s note: Add wording for fold expressions]

[ Example: Let A and B be atomic constraints [temp.constr.atomic]. The constraint A A B
subsumes A, but A does not subsume A A B. The constraint A subsumes AV B, but Av B
does not subsume A. Also note that every constraint subsumes itself. —end example]

[ Note: The subsumption relation defines a partial ordering on constraints. This partial ordering
is used to determine

* the best viable candidate of non-template functions [over.match.best],

+ the address of a non-template function [over.over],

+ the matching of template template arguments [temp.arg.template],

+ the partial ordering of class template specializations [temp.spec.partial.order], and
* the partial ordering of function templates [temp.func.order].

—end note]

o Constraint normalization [temp.constr.normal]

The normal form of an expression E is a constraint [temp.constr.constr] that is defined as
follows:

* The normal form of an expression ( E ) is the normal form of E.

* The normal form of an expression E1 || E2 is the disjunction [temp.constr.op] of the
normal forms of E1 and E2.

* The normal form of an expression E1 && E2 is the conjunction of the normal forms of E1
and E2.

* The normal form of a concept-id C<A;, A2, ..., A,>isthe normal form of the constraint-

expression of C, after substituting-Ar,—Azr,———— 4y

- substituting each use of A;'s corresponding template parameter in the constraint-
expression of C if A; denotes a concept-name

- substituting each A, that is not a concept-name for C's respective template parame-
ters in the parameter mappings in each atomic constraint. If any such substitution
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results in an invalid type or expression, the program is ill-formed; no diagnostic is

required.
[ Example:
template<typename T> concept A = T::value || true;
template<typename U> concept B = A<Ux*>;

template<typename V> concept C = B<V&>;

Normalization of B's constraint-expression is valid and results in T: : value (with the map-
ping T — Ux) V true (with an empty mapping), despite the expression T::value being
ill-formed for a pointer type T. Normalization of C's constraint-expression results in the
program being ill-formed, because it would form the invalid type V&x in the parameter
mapping. —end example]

« The normal form of a fold-expression [expr.prim.fold] F whose fold-operator op is either
&& or || and whose pattern is a concept-name C is the normal form of the expanded
expression F' produced by the expansion of C:

(((Ey 0pEy) op ---) op Ex ) for a unary left fold,

(Eyop (--- op (En—1 0p Ex)) ) for aunary right fold,

((((EOpE1) opEg) op ---) op Ey ) for a binary left fold, and

(Eiop (--- op (En_10p (Ey OpE))) ) for a binary right fold.

* The normal form of any other expression E is the atomic constraint whose expression is
E and whose parameter mapping is the identity mapping.

The process of obtaining the normal form of a constraint-expression is called normalization.
[ Note: Normalization of constraint-expressions is performed when determining the associated
constraints [temp.constr.constr] of a declaration and when evaluating the value of an id-
expression that names a concept specialization [expr.prim.id]. —end note]

[ Example:

template<typename T> concept C1 sizeof (T) == 1;
template<typename T> concept C2 = CI<T> && 1 == 2;
template<typename T> concept C3 = requires { typename T::type; };
template<typename T> concept C4 = requires (T x) { ++x; };

template<C2 U> void f1(U); // #1
template<C3 U> void f2(U); /] #2
template<C4 U> void f3(U); // #3

The associated constraints of #1 are sizeof (T) == 1 (with mapping T+— U)A 1 ==

The associated constraints of #2 are requires { typename T::type; }(with mapping T — U).
The associated constraints of #3 are requires (T x) { ++x; }(with mapping T — U). —end
example]
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o Variadic templates [temp.variadic]

A template parameter pack is a template parameter that accepts zero or more template
arguments. [ Example:

template<class ... Types> struct Tuple { };

Tuple<> t0; // Types contains no arguments

Tuple<int> t1; // Types contains one argument: int

Tuple<int, float> t2; // Types contains two arguments: int and float
Tuple<@> error; // error: @ is not a type

—end example]

A function parameter pack is a function parameter that accepts zero or more function argu-
ments. [ Example:

template<class ... Types> void f(Types ... args);

fO; // args contains no arguments

f(1; // args contains one argument: int

f(2, 1.0); // args contains two arguments: int and double
—end example]

An init-capture pack is a lambda capture that introduces an init-capture for each of the elements
in the pack expansion of its initializer. [ Example:

template <typename... Args>
void foo(Args... args) {

[...xs=args1l{
bar(xs...); // xs is an init-capture pack
b
3
foo(); // xs contains zero init-captures
foo(1); // xs contains one init-capture
—end example]

A pack is a template parameter pack, a function parameter pack, or an init-capture pack. The
number of elements of a template parameter pack or a function parameter pack is the number
of arguments provided for the parameter pack. The number of elements of an init-capture
pack is the number of elements in the pack expansion of its initializer.

A pack expansion consists of a pattern and an ellipsis, the instantiation of which produces
zero or more instantiations of the pattern in a list (described below). The form of the pattern
depends on the context in which the expansion occurs. Pack expansions can occur in the
following contexts:
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* In a function parameter pack [dcl.fct]; the pattern is the parameter-declaration without
the ellipsis.

* In a using-declaration [namespace.udecl]; the pattern is a using-declarator.
* In a template parameter pack that is a pack expansion [temp.param]:

- ifthetemplate parameter pack is a parameter-declaration; the pattern is the parameter-
declaration without the ellipsis;

- if the template parameter pack is a type-parameter; the pattern is the corresponding
type-parameter without the ellipsis.

- if the template parameter pack is a template-template-parameter; the pattern is the
corresponding template-template-parameter without the ellipsis.

* In an initializer-list [dcl.init]; the pattern is an initializer-clause.
* In a base-specifier-list [class.derived]; the pattern is a base-specifier.

« In a meme-initializer-list [class.base.init] for a mem-initializer whose mem-initializer-id de-
notes a base class; the pattern is the mem-initializer.

+ In a template-argument-list [temp.arg]; the pattern is a template-argument.
* In an attribute-list [dcl.attr.grammar]; the pattern is an attribute.

* In an alignment-specifier [dcl.align]; the pattern is the alignment-specifier without the
ellipsis.

* In a capture-list [expr.prim.lambda.capture]; the pattern is the capture without the ellipsis.
* In a sizeof... expression [expr.sizeof]; the pattern is an identifier.

* In a fold-expression [expr.prim.fold]; the pattern is the cast-expression that contains an
unexpanded pack.

[ Example:
template<class ... Types> void f(Types ... rest);
template<class ... Types> void g(Types ... rest) {
f(&rest ...); // *‘&rest ...'' is a pack expansion; ‘‘&rest’'’' is its pattern
3

—end example]

©  Typeequivalence [temp.type]

Two template-ids are the same if

* their template-names, operator-function-ids, or literal-operator-ids refer to the same tem-
plate, and
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* their corresponding type template-arguments are the same type, and

* their corresponding non-type template-arguments are template-argument-equivalent
(see below) after conversion to the type of the template-parameter, and

* their corresponding template template-arguments refer to the same template.

Two template-ids that are the same refer to the same class, function, concept, or variable.

o Partial ordering of function templates [temp.func.order]

If multiple function templates share a name, the use of that name can be ambiguous because
template argument deduction [temp.deduct] may identify a specialization for more than one
function template. Partial ordering of overloaded function template declarations is used in the
following contexts to select the function template to which a function template specialization
refers:

+ during overload resolution for a call to a function template specialization [over.match.best];
* when the address of a function template specialization is taken;

* when a placement operator delete that is a function template specialization is selected
to match a placement operator new [basic.stc.dynamic.deallocation,expr.new];

* when a friend function declaration [temp.friend], an explicit instantiation [temp.explicit]
or an explicit specialization [temp.expl.spec] refers to a function template specialization.

Partial ordering selects which of two function templates is more specialized than the other by
transforming each template in turn (see next paragraph) and performing template argument
deduction using the function type. The deduction process determines whether one of the
templates is more specialized than the other. If so, the more specialized template is the
one chosen by the partial ordering process. If both deductions succeed, the partial ordering
selects the more constrained template (if one exists) as determined below.

To produce the transformed template, for each type, non-type, or template template parame-
ter (including template parameter packs [temp.variadic] thereof) synthesize a unique type,
value, or class template respectively and substitute it for each occurrence of that parameter
in the function type of the template.

[Editor’s note: Do we need to change anything here?]

[ Note: The type replacing the placeholder in the type of the value synthesized for a non-type
template parameter is also a unique synthesized type. — end note] Each function template M
that is a member function is considered to have a new first parameter of type X (M), described
below, inserted in its function parameter list. If exactly one of the function templates was
considered by overload resolution via a rewritten candidate [over.match.oper] with a reversed
order of parameters, then the order of the function parameters in its transformed template is
reversed. For a function template M with cv-qualifiers cv that is a member of a class A:
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o Deducing template arguments from a type [temp.deduct.type]

[Editor’s note: Modify [temp.deduct.type]/p8 As follow]

A template type argument T, a template template argument denoting a class template or an
alias template TT, or a template non-type argument i can be deduced if P and A have one of
the following forms:

CVopt T

T*

T&

T&&

Topt [iopt ]
Topt (Topt ) noexcept(iopt )
T()pt Topt M
TTopt <T>
TTopt <i>
TTopt <TT>
TTopt <>
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